что такое сокращение в математике

Как сокращать алгебраические дроби?

5fc8d0358c384462599624

Определение

Алгебраическая дробь — это дробь, в числителе и/или знаменателе которой стоят алгебраические выражения (буквенные множители). Вот так:

5fc8d035f2298003135556

Алгебраическая дробь содержит буквенные множители и степени.

Необыкновенной алгебраическую дробь делают буквы. Если заменить их на цифры, то карета превратится в тыкву — алгебраическая дробь тут же станет обыкновенной.

Если вы засомневались, что должно быть сверху — числитель или знаменатель — переходите по ссылке и освежите знания по теме обыкновенных дробей.

5fc8d0585f3e2478507617

Сокращение алгебраических дробей

Сократить алгебраическую дробь — значит разделить ее числитель и знаменатель на общий множитель. Общий множитель числителя и знаменателя в алгебраической дроби — многочлен и одночлен.

Если в 7 классе только и разговоров, что об обыкновенных дробях, то 8 класс сокращает исключительно алгебраические дроби.

Сокращение дробей с буквами и степенями проходит в три этапа:

Для сокращения степеней в дробях применяем правило деления степеней с одинаковыми основаниями:

5fc8d0799c863668100294

Пример сокращения дроби со степенями и буквами:

Получаем сокращенную дробь.

Запоминаем: сокращать можно только одинаковые буквенные множители. Иными словами, сокращать можно только дроби с одинаковыми буквами.

❌ Так нельзя ✅ Так можно
5fc8d0c915e38924063719 5fc8d0e37fa1b650584695

Примеры сокращения алгебраических дробей с одночленами:

Пример сокращения №1.

5fc8d0fbd3ea3767399185

Получаем сокращенную алгебраическую дробь.

Пример сокращения №2.

5fc8d114ede35561622215

Получаем сокращенную дробь.

Сокращение алгебраических дробей с многочленами

Чтобы верно сократить алгебраическую дробь с многочленами, придерживайтесь двух главных правил:

Запомните: многочлены в алгебраической дроби находятся в скобках. Между этими скобками вклиниться может только знак умножения. Всем остальным знакам там делать нечего.

5fc8d1829727f513089843

Примеры сокращения алгебраических дробей с многочленами:

5fc8d1accd62b883186615

Последовательно сокращаем: сначала x, затем (x+c), далее сокращаем дробь на 6 (общий множитель).

5fc8d1cdafa9c078403222

Сокращаем многочлены a+b (в дроби их 3). Многочлен в числителе стоит в квадрате, поэтому мысленно оставляем его при сокращении.

Вынесение общего множителя при сокращении дробей

При сокращении алгебраических дробей иногда не хватает одинаковых многочленов. Для того, чтобы они появились, вынесите общий множитель за скобки.

Чтобы легко и непринужденно выносить множитель за скобки, пошагово выполняйте 4 правила:

Алгебра не терпит неточность. Всегда проверяйте, верно ли вынесен множитель за скобки — сделать это можно по правилу умножения многочлена на одночлен.

Для умножения одночлена на многочлен нужно умножить поочередно все члены многочлена на этот одночлен.

Пример 1.

5fc8d1e65e2d9248822631

Пример 2.

5fc8d201e66f3359099884

Как решаем: выносим общий множитель a за скобки и сокращаем оставшиеся в скобках многочлены.

Сокращение дробей. Формулы сокращенного умножения

Перед формулами сокращенного умножения не устоит ни одна дробь — даже алгебраическая.

Читайте также:  что такое реверс в игре bmx 2

Чтобы легко ориентироваться в формулах сокращенного умножения, сохраняйте и заучивайте таблицу. Формулы подскажут вам, как решать алгебраические дроби.

Примеры сокращения дробей с помощью формул сокращенного умножения:

5fc8d231b9f80737556121

5fc8d254b1c52105027632

Чтобы раскрыть тему сокращения алгебраических дробей и полностью погрузиться в мир числителей и знаменателей, решите следующие примеры для самопроверки.

Примеры сокращения дробей за 7 и 8 классы

5fc8d2948ac51133574336

Тема сокращения алгебраических дробей достаточно обширна, и требует к себе особого внимания. Чтобы знания задержалась в голове хотя бы до ЕГЭ, сохраните себе памятку по сокращению дробей. Этот алгоритм поможет не растеряться при встрече с алгебраическими дробями лицом к лицу.

Источник

Сокращение дробей: правила и примеры

Разберемся в том, что такое сокращение дробей, зачем и как сокращать дроби, приведем правило сокращения дробей и примеры его использования.

Что такое «сокращение дробей»

В результате такого действия получится дробь с новым числителем и знаменателем, равная исходной дроби.

Приведение дробей к несократимому виду

Это можно сделать, если сократить числитель и знаменатель на их наибольший общий делитель (НОД). Тогда, по свойству наибольшего общего делителя, в числителе и в знаменателе будут взаимно простые числа, и дробь окажется несократимой.

Приведение дроби к несократимому виду

Чтобы привести дробь к несократимому виду нужно ее числитель и знаменатель разделить на их НОД.

6 24 = 6 ÷ 6 24 ÷ 6 = 1 4

Сокращение дробей удобно применять, чтобы не работать с большими цифрами. Вообще, в математике существует негласное правило: если можно упростить какое-либо выражение, то нужно это делать. Под сокращением дроби чаще всего подразумевают ее приведение к несократимому виду, а не просто сокращение на общий делитель числителя и знаменателя.

Правило сокращения дробей

Чтобы сокращать дроби достаточно запомнить правило, которое состоит из двух шагов.

Правило сокращения дробей

Чтобы сократить дробь нужно:

Рассмотрим практические примеры.

Пример 1. Сократим дробь.

Найдем НОД числителя и знаменателя. Для этого в данном случае удобнее всего воспользоваться алгоритмом Евклида.

182 195 = 182 ÷ 13 195 ÷ 13 = 14 15

Готово. Мы получили несократимую дробь, которая равна исходной дроби.

Как еще можно сокращать дроби? В некоторых случаях удобно разложить числитель и знаменатель на простые множители, а потом из верхней и нижней частей дроби убрать все общие множители.

Пример 2. Сократим дробь

Для этого представим исходную дробь в виде:

360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7

Избавимся от общих множителей в числителе и знаменателе, в результате чего получим:

360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7 = 2 · 3 7 · 7 = 6 49

Наконец, рассмотрим еще один способ сокращения дробей. Это так называемое последовательное сокращение. С использованием этого способа сокращение производится в несколько этапов, на каждом из которых дробь сокращается на какой-то очевидный общий делитель.

Читайте также:  Если сне укусила летучая мышь

Пример 3. Сократим дробь

2000 4400 = 2000 ÷ 100 4400 ÷ 100 = 20 44

20 44 = 20 ÷ 2 44 ÷ 2 = 10 22

Получившийся результат снова сокращаем на 2 и получаем уже несократимую дробь:

Источник

Сокращение обыкновенных дробей

5fdb9e1b6ce9f756404046

Что такое «сокращение дробей»

Математика любит точность и краткость: лохматыми громоздкими числами ее расположение не заслужить. Поэтому, следуя негласному правилу, сокращайте все, что можно сократить.

Сократить дробь — значит разделить ее числитель и знаменатель на их общий делитель. Общий делитель должен быть положительным и не равен нулю и единице.

В результате сокращения вы получаете новую дробь, равную исходной дроби. Такие дроби равны по основному свойству:

Основное свойство дроби

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число — получится дробь, равная данной.

С основным свойством дроби знакомятся в 5 классе, но встречаться оно будет до самого окончания школы. Поэтому запоминаем, как выглядит основное свойство дроби в виде буквенных выражений:

5fdba4ae4e0ad332168139= 5fdba4ae8c8c0110818469

5fdba4ae4e0ad332168139= 5fdba4aeaa6de981268628

где a, b, m — натуральные числа.

Графически сокращение дробей обычно записывается вот так:

5fdb9e1bdd7a4983359742

Числитель и знаменатель зачеркиваются черточками. В этом примере числитель — 8, знаменатель — 36. Справа над ними записывают результаты деления числителя и знаменателя на их общий делитель. Общий делить 8 и 36 — 4. Это число не нужно записывать.

Больше наглядных примеров и понятных объяснений — на курсах обучения математике в онлайн-школе Skysmart.

Пример 1. Сократим обыкновенную дробь 5fdba73023922615819869

Разделим числитель и знаменатель на общий делитель 3.

5fdba7d296013600304083= 5fdba7d2de77e884110754= 5fdba7d2ecd80885014597

Сокращение выполнено: 5fdba7d296013600304083= 5fdba7d2ecd80885014597

Пример 2. Сократим обыкновенную дробь 5fdba8de384cf070214881

Разделим числитель и знаменатель на общий делитель 2.

5fdba8de384cf070214881= 5fdba8de7a267992177554= 5fdba8de87989230664602

Сокращение выполнено: 5fdba8de384cf070214881= 5fdba8de87989230664602

Приведение дробей к несократимому виду

Смысл сокращения дробей в том, чтобы в результате сокращения в числителе и знаменателе оказались наименьшие из возможных чисел.

Так, в результате сокращения в примере 2, мы из дроби 5fdba8de384cf070214881получили дробь 5fdba8de87989230664602

Выходит, что дробь выдержит еще одно сокращение и придет к виду 5fdbaa26106fd345135394

Сокращая дробь, стремитесь в итоге получить несократимую дробь.

Разделите числитель и знаменатель дроби на их НОД (наибольший общий делитель). Так вы приведете дробь к несократимому виду.

5fdc6c8a76333676073161— несократимая дробь, так как по свойствам НОД мы знаем, что:

a : НОД(a, b) и b : НОД(a, b) — взаимно простые числа.

Два целых числа a и b называются взаимно простыми, если их наибольший общий делитель равен единице, НОД(a, b) = 1.

Пример 3. Приведите обыкновенную дробь к несократимому виду 5fdbabe3a8447931679138

Найдем НОД числителя и знаменателя. НОД = 12

Найдем частное: 12 : 12 = 1

5fdbabe3a8447931679138= 5fdbabe3ec599697911982= 5fdbabe4065b6653982220

Сокращение выполнено: 5fdbabe3a8447931679138= 5fdbabe4065b6653982220

Пример 4. Приведите обыкновенную дробь к несократимому виду 5fdbc4cebdab0624536359

Найдем НОД числителя и знаменателя. НОД = 5

Найдем частное: 15 : 5 = 3

5fdbc4cebdab0624536359= 5fdbc4cf09afd196158611= 5fdbc4cf179e1546751988

Сокращение выполнено: 5fdbc4cebdab0624536359= 5fdbc4cf179e1546751988

Правило сокращения дробей

Чтобы без труда сокращать любую обыкновенную дробь, запомните правило.

Читайте также:  что такое релиз в компрессоре

Выполняйте сокращение дробей по следующему алгоритму:

В 6 классе каждая вторая задачка — с дробями. Чтобы легко управляться с ними и уметь сокращать любые числа, нужно хорошо потренироваться. Давайте разберем еще несколько примеров сокращения обыкновенных дробей.

Чтобы легко сокращать дроби, нужно уметь быстро находить НОД числителя и знаменателя. Для этого неплохо бы знать таблицу умножения и уметь раскладывать числа на простые множители.

Чтобы найти НОД числителя и знаменателя, разложим числа на простые множители.
36 = 2 * 2 * 3 * 3
84 = 2 * 2 * 3 * 7

Перемножаем все общие множители между собой 2 * 2 * 3 = 12.
НОД 36 и 84 = 12.

Пример 5. Сократите дробь 5fdbc5c3e7bf7126483346

Разложим числа в числителе и знаменателе на множители.
135 = 9 * 3 * 5
180 = 9 * 2 * 2 * 5

Мысленно убираем все общие множители и перемножаем оставшиеся.

5fdbc5c3e7bf7126483346= 5fdbc5c400ab3567335151= 5fdbc5c40d24d993338628

Сокращение выполнено: 5fdbc5c3e7bf7126483346= 5fdbc5c40d24d993338628

Пример 6. Сократите обыкновенную дробь 5fdbc6ab4432a806270678

Найдем НОД числителя и знаменателя. НОД = 9

5fdbc6ab4432a806270678= 5fdbc6ab822c0392558169= 5fdbc6aba4b60772142375

Сокращение выполнено: 5fdbc6ab4432a806270678= 5fdbc6aba4b60772142375

Дробь можно сократить, последовательно сокращая числитель и знаменатель на общий делитель. Такой способ подходит, если в числителе и знаменателе стоят крупные числа, и вы не уверены в подобранном НОД.

Пример 6. Сократите дробь: 5fdbc7b52e852848163706

5fdbc7b52e852848163706= 5fdbc7b56b7f5065177638= 5fdbc7b5782cb685308001= 5fdbc7b584c5b458535479

Сокращение выполнено: 5fdbc7b52e852848163706= 5fdbc7b584c5b458535479

Пример 7. Сократите дробь 5fdbc8abbf37c688813588

Найдем НОД, разложив числитель и знаменатель на простые множители.

168 = 2 * 2 * 2 * 3 * 7

240 = 2 * 2 * 2 * 2 * 3 * 5

Перемножаем все общие множители между собой 2 * 2 * 2 * 3 = 24

НОД 168 и 240 равен 24

Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 168 : 24 = 7

5fdbc8abbf37c688813588= 5fdbc8ac0dbef995494385= 5fdbc8ac21699993992783

Сокращение выполнено: 5fdbc8abbf37c688813588= 5fdbc8ac21699993992783

Пример 8. Сократите дробь 5fdbca0497afe859626155

Найдем НОД, разложив числитель и знаменатель на простые множители.

360 = 2 * 2 * 2 * 3 * 3 * 5

540 = 2 * 2 * 3 * 3 * 3 * 5

Перемножаем все общие множители между собой 2 * 2 * 3 * 3 * 5 = 180

НОД 360 и 540 равен 180

Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 360 : 180 = 2

5fdbca0497afe859626155= 5fdbca04dbfb2057359990= 5fdbca04e97a2619486331

Сокращение выполнено: 5fdbca0497afe859626155= 5fdbca04e97a2619486331

Пример 8. Сократите дробь 5fdbca0503318418321042

Найдем НОД, разложив числитель и знаменатель на простые множители.

420 = 2 * 2 * 3 * 5 * 7

2520 = 2 * 2 * 2 * 3 * 3 * 5 * 7

Перемножаем все общие множители между собой 2 * 2 * 3 * 5 * 7 = 420

НОД 420 и 2520 равен 420

Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 420 : 420 = 1

5fdbca0503318418321042= 5fdbca0513cde773147223= 5fdbca05287d0296431269

Сокращение выполнено. Дробь приведена к несократимому виду: 5fdbca0503318418321042= 5fdbca05287d0296431269

Пример 9. Сократите дробь 5fdbca0536d9c956857652

Найдем НОД, разложив числитель и знаменатель на простые множители.

1575 = 3 * 3 * 5 * 5 * 7

3450 = 2 * 3 * 5 * 5 * 23

Перемножаем все общие множители между собой 3 * 5 * 5 = 75

НОД 1575 и 3450 равен 72

Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 1575 : 75 = 21

5fdbca0536d9c956857652= 5fdbca05499c0713542264= 5fdbca0557acf294171571

Сокращение выполнено. Дробь приведена к несократимому виду: 5fdbca0536d9c956857652= 5fdbca0557acf294171571

Иногда разложение на простые множители занимает немало времени, особенно если раскладываемые числа большие, как в двух предыдущих примерах. Чтобы быстро разложить любое число на простые множители, можно обратиться к онлайн-калькулятору — в интернете их много. Воспользуйтесь одним из них.

Если времени совсем не хватает — можно использовать онлайн-калькулятор и для нахождения НОД. Однако не стоит постоянно прибегать к калькулятору для решения задач, пока вы не научитесь уверенно и быстро вычислять сами.

Источник

DACHARAI - самый большой ресурс для садовода
Adblock
detector