что такое спектральная характеристика фотодиода

Исчерпывающая информация о фотодиодах

Фотодиоды – полупроводниковые элементы, обладающие светочувствительностью. Их основная функция – трансформация светового потока в электросигнал. Такие полупроводники применяются в составе различных приборов, функционирование которых базируется на использовании световых потоков.

10cbcc358870e568278e7f4621958088

Принцип работы фотодиодов

Основа действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.

Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле.

Схема фотодиода

9977669567f778242981a464350541d2

Режимы работы

Фотодиоды разделяют по режиму функционирования.

Режим фотогенератора

Осуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы.

Режим фотопреобразования

Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.

Основные параметры

Свойства фотодиодов определяют следующие характеристики:

Из чего состоит фотодиод?

4638e78ff47270f2e2723a6c7f06e7e7

Разновидности фотодиодов

Для этих полупроводников характерно наличие в зоне p-n перехода участка, обладающего собственной проводимостью и значительной величиной сопротивления. При попадании на этот участок светового потока появляются пары дырок и электронов. Электрополе в данной области постоянно, пространственного заряда нет. Такой вспомогательный слой расширяет диапазон рабочих частот полупроводника. По функциональному назначению p-i-n-фотодиоды разделяют на детекторные, смесительные, параметрические, ограничительные, умножительные, настроечные и другие.

Лавинные

Этот вид отличается высокой чувствительностью. Его функция – преобразование светового потока в электросигнал, усиленный с помощью эффекта лавинного умножения. Может применяться в условиях незначительного светового потока. В конструкции лавинных фотодиодов используются сверхрешетки, способствующие снижению помех при передаче сигналов.

С барьером Шоттки

Состоит из металла и полупроводника, вокруг границы соединения которых создается электрическое поле. Главным отличием от обычных фотодиодов p-i-n-типа является использование основных, а не дополнительных носителей зарядов.

С гетероструктурой

Образуется из двух полупроводников, имеющих разную ширину запрещенной зоны. Гетерогенным называют слой, находящийся между ними. Путем подбора таких полупроводников можно создать устройство, работающее в полном диапазоне длин волн. Его минусом является высокая сложность изготовления.

Области применения фотодиодов

Другие сферы использования: оптоволоконные линии, лазерные дальномеры, установки эмиссионно-позитронной томографии.

Источник

Фотодиоды

Принцип действия фотодиода

Полупроводниковый фотодиод — это полупроводниковый диод обратный ток которого зависит от освещенности.

Свойства фотодиода можно охарактеризовать следующими характеристиками:

Вольт-амперная характеристика фотодиода представляет собой зависимость светового тока при неизменном световом потоке и темнового тока 1т от напряжения.

Световая характеристика фотодиода обусловлена зависимостью фототока от освещенности. При увеличении освещенности фототок возрастает.

Спектральная характеристика фотодиода — это зависимость фототока от длины волны падающего света на фотодиод. Она определяется для больших длин волн шириной запрещенной зоны, а при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.

Постоянная времени — это время, в течение которого фото- ток фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.

Темновое сопротивление — сопротивление фотодиода в отсутствие освещения.

Интегральная чувствительность определяется формулой:

ftm image068

где 1ф — фототок, Ф — освещенность.

Существует три физических фактора, влияющих на инерционность:

1. Время диффузии или дрейфа неравновесных носителей через базу т;

2. Время пролета через р-n переход т,;

3. Время перезарядки барьерной емкости р-п перехода, характеризующееся постоянной времени RC6ap.

Толщина р-п перехода, зависящая от обратного напряжения и концентрации примесей в базе, обычно меньше 5 мкм, а значит, т, — 0,1 не. RC6ap определяется барьерной емкостью р-п перехода, зависящей от напряжения и сопротивления базы фотодиода при малом сопротивлении нагрузки во внешней цепи. Величина RC6ap обычно составляет нескольких наносекунд.

Расчет КПД фотодиода и мощности

КПД вычисляется по формуле:

ftm image070

где Росв — мощность освещенности; I — сила тока;

U — напряжение на фотодиоде.

Расчет мощности фотодиода иллюстрирует рис. 2.12 и таблица 2.1.

ftm image072

Рис. 2.12. Зависимость мощности фотодиода от напряжения и силы тока

Максимальная мощность фотодиода соответствует максимальной площади данного прямоугольника.

Таблица 2.1. Зависимость мощности от КПД

Мощность освещенности, мВт

Применение фотодиода в олтоэлектронике

Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах:

• Оптоэлектронные интегральные микросхемы.

Фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств, а именно: почти идеальная гальваническая развязка управляющих цепей от силовых при сохранении между ними сильной функциональной связи.

Эти приборы (сканистор, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие) относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Оптоэлектрический «глаз» на основе фотодиода способен реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ.

Число фоточувствительных ячеек в приборе является достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения).

Как происходит восприятие образов?

Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик каждого элемента (ток, заряд, напряжение) пропорционален его освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. Тогда на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ.

При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования. • Оптроны.

Оптроном называется такой оптоэлектронный прибор, в котором имеются источник и приемник излучения с тем или иным видом оптической связи между ними, конструктивно объединенные и помещенные в один корпус. Между управляющей цепью (ток в которой мал, порядка нескольких мА), куда включен излучатель, и исполнительной, в которой работает фотоприемник, отсутствует электрическая (гальваническая) связь, а управляющая информация передается посредством светового излучения.

Это свойство оптоэлектронной пары (а в некоторых видах оптронов присутствует по несколько не связанных друг с другом даже оптически оптопар) оказалось незаменимым в тех электронных узлах, где нужно максимально устранить влияние выходных электрических цепей на входные. У всех дискретных элементов (транзисторов, тиристоров, микросхем, являющихся коммутационными сборками, или микросхем с выходом, позволяющим коммутировать нагрузку большой мощности) управляющие и исполнительные цепи электрически связаны друг с другом. Это часто недопустимо, если коммутируется высоковольтная нагрузка. К тому же, возникающая обратная связь неминуемо приводит к появлению дополнительных помех.

Конструктивно фотоприемник обычно крепится на дне корпуса, а излучатель — в верхней части. Зазор между излучателем и фотоприемником заполнен иммерсионным материалом — чаще всего эту роль выполняет полимерный оптический клей. Этот материал исполняет роль линзы, фокусирующей излучение на чувствительный слой фотоприемника. Иммерсионный материал снаружи покрыт специальной пленкой, отражающей световые лучи внутрь, чтобы препятствовать рассеянию излучения за пределы рабочей зоны фотоприемника.

Роль излучателей в оптронах, как правило, выполняют светодиоды на основе арсенид-галлия. Светочувствительные элементы в оптопарах могут представлять собой фотодиоды (оптопары серии АОД…), фототранзисторы, фототринисторы (оптопары серии АОУ. ) и высокоинтегрированные схемы фотореле. В диодной оптопаре, например, в качестве фотоприемного элемента используется фотодиод на основе кремния, а излучателем служит инфракрасный излучающий диод. Максимум спектральной характеристики излучения диода приходится на длину волны около 1 мкм. Диодные оптопары применяются в фотодиодном и фотогенераторном режимах.

Читайте также:  Клубника на ветках сон

Транзисторные оптроны (серия АОТ…) имеют некоторые преимущества относительно диодных. Коллекторным током биполярного транзистора управляют как оптически (воздействуя на светодиод), так и электрически по базовой цепи (в данном случае работа фототранзистора при отсутствии излучения управляющего светодиода оптрона практически не отличается от работы обыкновенного кремниевого транзистора). У полевого транзистора управление осуществляется через цепь затвора.

Кроме того, фототранзистор может работать в ключевом и усилительных режимах, а фотодиод — только в ключевом. Оптроны с составными-транзисторами (например, АОТ1ЮБ), имеют наибольший коэффициент усиления (как и обычный узел на составном транзисторе), могут коммутировать напряжение и ток достаточно больших величин и по данным параметрам уступают только тиристорным оптронам и оптоэлектронным реле типа КР293КП2 — КР293КП4, которые приспособлены для коммутации высоковольтных и сильноточных цепей. Сегодня в розничной продаже появились новые оптоэлектронные реле серий К449 и К294. Серия К449 позволяет коммутировать напряжение до 400 В при токе до 150 мА. Такие микросхемы в четырехвы- водном компактном корпусе DIP-4 приходят на смену маломощным электромагнитным реле и имеют по сравнению с реле массу преимуществ (бесшумность работы, надежность, долговечность, отсутствие механических контактов, широкий диапазон напряжения срабатывания). Кроме того, их доступная цена объясняется тем, что нет необходимости использовать драгметаллы (в реле ими покрываются коммутирующие контакты).

В резисторных оптронах (например, ОЭП-1) и-злучателями являются электрические минилампы накаливания, помещенные также в один корпус.

Графическим обозначениям оптронов по ГОСТу присвоен условный код — латинская буква U, после которой следует порядковый номер прибора в схеме.

В главе 3 книги описаны приборы и устройства, иллюстрирующие применение оптронов.

Любое оптоэлектронное устройство содержит фотоприемный блок. И в большинстве современных оптоэлектронных устройств фотодиод составляет основу фотоприемника.

обладают наилучшим сочетанием фотоэлектрических параметров, основных с точки зрения использования в оптоэлектронике: высокие значения чувствительности и быстродействия, малые значения паразитных параметров (например, тока утечки). Простота их устройства позволяет достигнуть физического и конструктивного оптимума и обеспечить наиболее полное использование падающего света.

В сопоставлении с другими, более сложными фотоприемниками, они обладают наибольшей стабильностью температурных характеристик и лучшими эксплуатационными свойствами.

Основной недостаток, на который обычно указывают, — отсутствие усиления. Но он достаточно условен. Почти в каждом оп- тоэлектронном устройстве фотоприемник работает на ту или иную согласующую электронную схему. И введение усилительного каскада в нее значительно проще и целесообразнее, чем придание фотоприемнику несвойственных ему функций усиления.

Высокая информационная емкость оптического канала, связанная с тем, что частота световых колебаний (около 10 15 Гц) в 10 3 …10 4 раз выше, чем в освоенном радиотехническом диапазоне. Малое значение длины волны световых колебаний обеспечивает высокую достижимую плотность записи информации в оптических запоминающих устройствах (до 10 8 бит/см 2 ).

Острая направленность (кучность) светового излучения, обусловленная тем, что угловая расходимость луча пропорциональна длине волны и может быть меньше одной минуты. Это позволяет концентрированно и с малыми потерями передавать электрическую энергию в любую область пространства.

Возможность двойной — временной и пространственной — модуляции светового луча. Так как источник и приемник в опто- электронике не связаны друг с другом электрически, а связь между ними осуществляется только посредством светового луча (электрически нейтральных фотонов), то они не влияют друг на друга. И поэтому в оптоэлектронном приборе поток информации передается лишь в одном направлении — от источника к приемнику. Каналы, по которым распространяется оптическое излучение, не воздействуют друг на друга и практически не чувствительны к электромагнитным помехам, что определяет их высокую помехозащищенность.

Важная особенность фотодиодов — высокое быстродействие. Они могут работать на частотах до нескольких МГц. обычно изготовляют из германия или кремния.

Фотодиод является потенциально широкополосным приемником. Этим обуславливается его повсеместное применение и популярность.

Инфракрасный излучающий диод (ИК диод) представляет собой полупроводниковый диод, который при протекании через него прямого тока излучает электромагнитную энергию в инфракрасной области спектра.

В отличие от видимого человеческим глазом спектра излучения (какое, например, производит обычный светоизлучающий диод на основе фосфида галлия) ИК излучение не может быть воспринято человеческим глазом, а регистрируется с помощью специальных приборов, чувствительных к данному спектру излучения. Среди популярных фотоприемных диодов ИК спектра можно отметить фоточувствительные приборы МДК-1, ФД263-01 и подобные им.

Спектральные характеристики ИК излучающих диодов имеют выраженный максимум в интервале волн 0,87…0,96 мкм. Эффективность излучения и КПД данных приборов выше, чем у светоизлучающих диодов.

На основе ИК диодов (которые в электронных конструкциях занимают важное место передатчиков импульсов ИК спектра) конструируются волоконно-оптические линии (выгодно отличающиеся своим быстродействием и помехозащищенностью), многоплановые электронные бытовые узлы и, конечно же, электронные узлы охраны. В этом есть свое преимущество, т.к. ИК луч невидим человеческим глазом и в некоторых случаях (при условии использования нескольких разнонаправленных ИК лучей) определить визуально наличие самого охранного устройства невозможно до его перехода в режим «тревога»). Опыты работы в сфере производства и обслуживания систем охраны на основе ИК излучателей позволяют все же дать некоторую рекомендацию по определению рабочего состояния ИК излучателей.

Если близко всмотреться в излучающую поверхность ИК диода (например, АЛ147А, АЛ156А), когда на него подан сигнал управления, то можно заметить слабое красное свечение. Световой спектр этого свечения близок к цвету глаз животных альбиносов (крыс, хомяков и т.д.). В темноте ИК свечение еще более выражено. Необходимо заметить, что длительное время всматриваться в излучающий ИК световую энергию прибор нежелательно с медицинской точки зрения.

Кроме систем охраны, ИК излучающие диоды в настоящее время находят применение в брелоках сигнализации для автомобилей, различного рода беспроводных передатчиках сигналов на расстояние. Например, подключив к передатчику модулированный НЧ сигнал от усилителя, с помощью ИК приемника на некотором расстоянии (зависит от мощности излучения и рельефа местности) можно прослушивать звуковую информацию, телефонные переговоры также можно транслировать на расстояние. Этот способ сегодня менее эффективен, но все же является альтернативным вариантом домашнему радиотелефону. Самым популярным (в быту) применением ИК излучающих диодов являются пульты дистанционного управления различными бытовыми приборами.

Как может легко убедиться любой радиолюбитель, вскрыв крышку ПДУ, электронная схема этого прибора не сложна и может быть повторена без особых проблем. В радиолюбительских конструкциях, некоторые из которых описаны в третьей главе данной книги, электронные устройства с ИК излучающими и приемными приборами намного проще, чем промышленные устройства.

Параметры, определяющие статические режимы работы ИК диодов (прямое и обратное максимально допустимое напряжение, прямой ток и т.д.) сходны с параметрами фотодиодов. Основными специфическими параметрами, по которым их идентифицируют, для ИК диодов являются:

Мощность излучения — Ризл — поток излучения определенного спектрального состава, излучаемого диодом. Характеристикой диода, как источника ИК излучения, является ватт-амперная характеристика — зависимость мощности излучения в Вт (милливаттах) от прямого тока, протекающего через диод. Диаграмма направленности излучения диода показывает уменьшение мощности излучения в зависимости от угла между направлением излучения и оптической осью прибора. Современные ИК диоды различаются между имеющими остронаправленное излучение и рассеянное.

При конструировании электронных узлов следует учитывать, что дальность передачи ИК сигнала прямо зависит от угла наклона (совмещения передающей и приемной частей устройства) и мощности ИК диода. При взаимозаменах ИК диодов необходимо учитывать этот параметр мощности излучения. Некоторые справочные данные по отечественным ИК диодам приведены в табл. 2.2.

Данные по взаимозаменам зарубежных и отечественных приборов приведены в приложении. Сегодня наиболее популярными типами ИК диодов среди радиолюбителей считаются приборы модельного ряда АЛ 156 и АЛ147. Они оптимальны по универсальности применения и стоимости.

Импульсная мощность излучения — Ризл им — амплитуда потока излучения, измеряемая при заданном импульсе прямого тока через диод.

Ширина спектра излучения — интервал длин волн, в котором спектральная плотность мощности излучения составляет половину максимальной.

Максимально допустимый прямой импульсный ток 1пр им (ИК диоды в основном используются в импульсном режиме работы).

Таблица 2.2. Излучающие диоды инфракрасного спектра

Источник

5.1 ПОЛУПРОВОДНИКОВЫЕ ФОТОДИОДЫ (ФД)

Функция детектора волоконно-оптической системы передачи сводится к преобразованию входного оптического сигнала в электрический, который затем подвергается усилению и обработке электронными схемами фотоприёмника. Предназначенный для этих целей фотодетектор должен точно воспроизводить форму оптического сигнала, не внося дополнительного шума.
Поэтому основными требованиями к фотодетектору являются:

Читайте также:  Когда голубь снится во сне

Наиболее полно указанным требованиям удовлетворяют полу-проводниковые фотодиоды.
Фотоэлектрическое преобразование позволяет осуществлять дальнейшую обработку информации на основе электронных схем, возможности которых при всех прочих равных условиях ограничены соотношением сигнала к шуму на входе электронного тракта, следующего за фотодетектором. Селективные фотоприёмники позволяют увеличить объём передачи информации на нескольких близких несущих частотах. Ширина полосы спектральной чувствительности фотоприёмников Δλ, определяющая их селективность, должна совпадать с шириной полосы источников излучения.
В полупроводниковых фотоприёмниках иcпользуют две формы внутреннего фотоэффекта:

Для создания чувствительных и быстродействующих фотодетекторов можно использовать как внешний, так и внутренний фотоэффекты. Внешний фотоэффект используется в вакуумных приборах – фотоэлементах, когда падающий на катод свет вызывает эмиссию электронов. При внутреннем фотоэффекте (но только при фотовольтаическом эффекте) в области p-n-перехода полупроводника образуются носители заряда внутри полупроводника.

5.1.1 Принцип действия фотодиода

5.1
Рисунок 5.1 – Процесс перехода электрона в зону проводимости

Для регистрации потока фотонов необходимы условия, при которых электронно-дырочные пары не рекомбинируют за счёт перехода электрона обратно в валентную зону. Эти условия в ФД создаются внутренним электрическим полем перехода. Известно, что в области перехода концентрация электронов в зоне проводимости и дырок в валентной зоне меньше, чем в прилегающих полупроводниках n- и p-типа, соответственно. Поэтому область в окрестности перехода называется обеднённым слоем. Именно здесь вероятность поглощения фотона велика, а среднее время, за которое созданная электронно-дырочная пара рекомбинирует, может быть сделано большим.
Процессу разделения подвергаются носители заряда, генерируемые в обеднённой области перехода и прилегающей к ней областях размером, примерно равным диффузионной длине неосновных носителей. Только с расстояния, меньшего диффузионной длины, неосновной носитель в процессе движения успевает пересечь границу перехода за время жизни.
Неосновные носители, генерируемые в р- и n-областях на большом расстоянии от границы перехода, вследствие рекомбинации не попадают в обеднённую область, где сосредоточено электрическое поле перехода. На рисунке 5.2 показана зонная диаграмма энергетических уровней электрона при обратном смещении.

5.2
Рисунок 5.2 – Зонная диаграмма энергетических уровней электронов для р-n-перехода при обратном смещении U

Обеднённый слой не имеет свободных носителей, поэтому его сопротивление очень велико, и практически всё падение напряжения приходится на область контакта. В результате электрические силы очень велики в области контакта и пренебрежимо малы в других областях.
За счёт напряжения смещения U возникает дополнительное ускоряющее электрическое поле, которое действует на электроны в зоне проводимости и дырки в валентной зоне и перемещает носители, появившиеся при поглощении фотона, улучшая тем самым характеристики фотодиода. В результате электроны дрейфуют в n-область, а дырки – в p-область, где вероятность их рекомбинации мала. Величина приложенного напряжения напрямую связана с напряжённостью электрического поля, а, следовательно, и с кулоновской силой, действующей на заряженные частицы.
В конечном итоге напряжение смещения U определяет скорость их движения через обеднённую область. Эта скорость должна быть выбрана так, чтобы время пролёта частиц до внешних контактов ФД было бы существенно меньше, чем среднее время рекомбинации. Тогда практически все электронно-дырочные пары, появившиеся вследствие поглощения фотонов, участвуют в формировании фототока. Те носители, которые достигают обеднённой области быстро проходят её под действием сильного электрического поля, возбуждая при этом ток во внешней цепи. Данный ток возникает со сдвигом во времени по сравнению с поглощением фотона. Сдвиг во времени определяется первоначальным медленным диффузионным движением носителей по направлению к обеднённой области.
В идеальном фотодиоде весь падающий свет поглощается в обеднённом слое, и все рождающиеся носители собираются на контактах. Тогда фототок под действием оптической мощности P определяется из выражения

f5.1

где Р – оптическая мощность;
Eф– фото-ЭДС;
e – заряд электрона.
На практике, конечно, часть падающего света отражается.

5.1.2 «Красная граница» фотоэффекта

При выборе ФД для ВОЛС необходимо учитывать зависимость его спектральной чувствительности от длины волны λ источника света. Выбранный ФД сохраняет способность реагировать на оптическое излучение до тех пор, пока энергия фотонов, составляющих это излучение, достаточна для перевода электрона из валентной зоны в зону проводимости (рисунок 5.3).

5.3
а–при «зона – зонном» возбуждении; б–в результате возбуждения с участием донорных и акцепторных уровней; в–при внутризонных переходах
Рисунок 5.3 – Зонная структура, иллюстрирующая процессы поглощения при различных возбуждениях

Для каждого из этих переходов требуется некоторая минимальная энергия фотона, поэтому каждый тип фотоприёмника имеет длинноволновую границу, определяемую выбранным материалом

f5.2

f5.3

где Eз[эВ]=Eп-Eв – ширина запрещенной зоны, или энергетический зазор при переходе «зона–зона» или «примесный уровень–зона».
Выражение (5.3) определяет так называемую «красную границу» λпор для ФД, выполненного из полупроводникового материала. При λ>λпор он не реагирует на оптическое излучение.
Основным видом фотопроводимости является собственная фотопроводимость, обусловленная внутренним фотоэффектом, при котором изменение электропроводности происходит вследствие оптического возбуждения носителей заряда из связанных состояний в свободные и соответственного увеличения концентрации электронов в зоне проводимости или дырок в валентной зоне.
Фотопроводимость может возникнуть так же за счёт оптических переходов между двумя связанными состояниями (примесная фото-проводимость). Примесная фотопроводимость может быть индуцирована в полупроводнике при освещении его коротковолновым светом соответствую-щей области собственного поглощения. Это явление может наблюдаться в полупроводнике, содержащем донорные и акцепторные примеси.
Как правило, собственная фотопроводимость значительно сильнее примесной. Поэтому «красная граница» определяется шириной запрещённой зоны применяемого полупроводника.
Поглощение приводит к экспоненциальному уменьшению мощности излучения

f5.4

где х – глубина поглощения;
α – коэффициент поглощения, характеризующий материал.

Для изготовления ФД часто используют кремний (Si), германий (Ge) и комбинированные соединения типа InGaAs. Кремниевые ФД имеют «красную границу» в области λ = 1мкм и поэтому редко используются в ВОЛС, в которых наиболее часто применяют источники света с длиной волны λ = 1,3мкм и λ = 1,55мкм. В последнее время, благодаря новейшим достижениям в области технологии, получили широкое применение приборы на основе комбинированных соединений. Их характеристики оптимизируются специально для использования совместно с определённым типом волоконного световода и источником. Широко применяется полупроводник типа InGaAsP в спектральном диапазоне 0,98 – 1,6мкм для создания высокоскоростных ФД.

5.1.3 Вольт-амперные характеристики ФД

На рисунке 5.4 показаны вольт-амперные характеристики ФД в области прямого и обратного смещения p-n-перехода.

5.4
Рисунок 5.4 – Вольт-амперные характеристики фотодиода

5.1.4 p-n-фотодиод

Схема фотодиода p-n-типа приведена на рисунке 5.5.

5.5
Рисунок 5.5 – Процесс образования носителей тока в p-n-фотодиоде

Диод имеет обеднённую область, образованную неподвижными положительно заряженными атомами донора в n-области перехода и неподвижными отрицательно заряженными атомами акцептора в р-области, а также область поглощения падающего света.
Ширина обёдненной области зависит от концентрации легирующих примесей: чем меньше примесей, тем шире обеднённый слой. Положение и ширина поглощающей области зависит от длины волны падающего света и материала, из которого изготовлен фотодиод. Чем сильнее поглощается свет, тем тоньше поглощающая область. Когда поглощаются фотоны, электроны переходят из валентной зоны в зону проводимости и образуются электронно-дырочные пары. Если такие пары создаются в обеднённой области, то электроны и дырки под влиянием сильного поля в этой области будут быстро дрейфовать в обе стороны (электроны в n-слой, а дырки в p-слой) и в цепи смещения возникнет ток. Если электронно-дырочная пара образуется вне обеднённой области, то дырка вначале диффундирует в направлении градиента концентрации, а уже затем попадёт на внешний контакт. Так как процесс диффузии по сравнению с дрейфом происходит медленнее, то желательно, чтобы большая часть света поглощалась в обеднённой области. Увеличение этой области достигается уменьшением концентрации легирующей примеси в n-слое. Слабо легированный n-слой можно считать теперь собственным, т.е. i-слоем (от англ. intrisic – собственный). Если теперь добавить сильно легированную n-область, то получим известную p-i-n-структуру.

5.1.5 р-i-n-фотодиод

На практике используется два типа фотодиодов. Первый из них – p-i-n-фотодиод – получил своё название благодаря структуре слоёв полупроводниковых материалов, из которых он образован. На рисунке 5.6 приведена структура продольного сечения такого устройства, на котором обозначены:

5.6
Рисунок 5.6 – Структура продольного сечения p-i-n-фотодиода

1 – тонкий слой полупроводника p-типа с концентрацией основных носителей (дырок) Nр на несколько порядков выше, чем у собственного полупроводника;
2 – слой собственного полупроводника i-типа (обеднённый слой);
3 – слой полупроводника n-типа с концентрацией основных носителей (электронов) Nn на несколько порядков выше, чем у собственного полупроводника;
4 – изолирующий слой SiO2;
5 – отрицательный контакт, обеспечивающий подачу отрицательного потенциала на полупроводниковый слой 1;
6 – просветляющее покрытие, нанесённое на внешнюю поверхность слоя 1, представляет собой тонкую плёнку вещества толщиной λ/4, что уменьшает потери на отражение;
7 – положительный контакт, нанесённый на внешнюю поверхность слоя 3.

Читайте также:  Заболеть во сне как лечить

5.7
Рисунок 5.7 – Процесс образования носителей тока в p-i-n-фотодиоде, возникновение фототока и распределение электрического поля в структуре

ФФД при фотовольтаическом эффекте может быть представлен эквивалентной схемой, в которой этот процесс учитывается введением ёмкости перехода CД (рисунок 5.8). Она шунтирует активное сопротивление перехода RД и, в конечном итоге, определяет быстродействие фотоприёмника.

5.8
Рисунок 5.8 – Эквивалентная схема фотодетектора

Рассмотренный p-i-n-фотодиод работает при напряжениях смещения U меньше пробивного напряжения Uпр

f5.5

5.1.6 Лавинный фотодиод

Предельная чувствительность p-i-n-фотодиода определяется хаотическими флуктуациями напряжения и тока на выходе, которые имеются как в присутствии оптического сигнала, так и без него. В случае p-i-n-диода – это тепловой и дробовой шум и шум темнового тока. Значительного увеличения пороговой чувствительности можно добиться в лавинных фотодиодах (ЛФД), работа которых основана на лавинном умножении носителей, так как в этом случае возникает внутреннее усиление. Конечно, при этом умножатся шумы диода, но суммарный эффект останется положительным, Такое умножение можно получить в лавинном процессе при высоких значениях электрического поля в лавинном фотодиоде. Структура продольного сечения ЛФД показан на рисунке 5.9.

5.9
Рисунок 5.9 – Структура продольного сечения ЛФД

5.10
Рисунок 5.10 – Процесс образования носителей тока в ЛФД, возникновение фототока и распределение электрического поля в структуре

f5.6

f5.7

5.1.7 Параметры фотодиода

а) Квантовая эффективность η.
Как правило, не все поглощенные кванты света приводят к появлению электроно-дырочной пары. Этот факт необходимо учитывать коэффициентом, характеризующим эффективность преобразования фотонов в электрический ток, или так называемой квантовой эффективностью (квантовым выходом) фотодетектора.
Квантовой эффективностью (выходом) фотодиода называется отношение числа рождающихся в секунду электронов к числу фотонов, падающих на ФД:

f5.8

где Iф – фототок;
e – заряд электрона;
h – постоянная Планка;
ν – частота излучения;
P – мощность оптического излучения.
Таким образом, средний ток, протекающий через нагрузку, определяется соотношением

f5.9

На рисунке 5.11 приведена зависимость квантовой эффективности η для германиевого и кремниевого ФД от длины волны λ.

5.11
Рисунок 5.11 – Зависимость квантовой эффективности от длины волны для германиевого и кремниевого фотодиодов

Для образования электронно-дырочной пары энергия поглощаемого кванта должна быть достаточной для перевода электрона из валентной зоны в зону проводимости, т.е. должно выполняться условие hν ≥ Eз.
Фотодиоды, выполненные из германия, работают при длинах волн короче 1,8мкм, из кремния – при длинах волн короче 1,2мкм, из арсенида галлия – до 0,87мкм.

б) Токовая чувствительность (монохроматическая) S.
Токовая чувствительность S (А/Вт) определяется как

f5.10

где Iф – фототок (А);
P(λ) – полная оптическая мощность излучения на длине волны λ, падающего на фоточувствительную площадку (Вт).

С учётом того, что Iф = eηP/(hν), получаем

f5.11

Отсюда следует, что чувствительность тем выше, чем больше квантовый выход η, т.е. чем больше доля светового потока используется для создания электронно-дырочных пар.
Токовая чувствительность характеризует фотоприёмник при низких частотах модуляции.

в) Темновой ток IT.
При обратном смещении через нагрузку в отсутствии падающего на фотодиод излучения протекает темновой ток IT(нА). Его величина зависит от материала полупроводника, температуры окружающей среды, конструкции фотодетектора. Этот ток добавляется к току полезного сигнала, когда на фотодиод поступает свет.
Значения этого тока утечки достигает единиц наноампера.

г) Время нарастания τнар (спада τспад).
Это самая важная динамическая характеристика ФД. Она определяется как время, необходимое выходному сигналу, чтобы возрасти от уровня 0,1 до 0,9 (снизиться от 0,9 до 0,1) от установившегося максимального значения при условии, что на вход подаются строго прямоугольные импульсы света большой длительности. Эти времена зависят от структуры ФД, материала, напряжённости электрического поля в слаболегированной области и температуры. Максимальная из двух величин (обычно τнар) берётся в качестве характеристики времени отклика ФД. С увеличением частоты модуляции входных оптических импульсов максимальное значение фототока уменьшается. Предельная частота определяется как частота модуляции, при которой токовая чувствительность составляет 0,707 от значения токовой чувствительности при низких частотах модуляции.
На полосу пропускания или скорость передачи влияют, главным образом, времена нарастания и спада. Различные ФД могут очень сильно отличаться по быстродействию (таблица 5.1).

Таблица 5.1. Типовые характеристики фотодетекторов

Фотодетектор Токовая чувствительность,
А/Вт
Темновой ток, нА Время нарастания, нс
p-i-n- ФД (InGaAs) 0,8 0,1 – 3 0,01 – 5
p-i-n- ФД (Si) 0,5 10 0,1 – 5
ЛФД (InGaAs) 20 – 60 30 0,3
ЛФД (Si) 20 – 60 400 0,3 – 1

Наиболее быстрыми являются p-i-n-ФД. У ЛФД увеличение коэффициента умножения сопровождается уменьшением быстродействия по сравнению с p-i-n-ФД.

д) Шумы ФД.
Шумом называется любое возмущение электрического или оптического характера, отличное от полезного сигнала. Шум является неустранимым эффектом, который серьезно ограничивает чувствительность детектора.
Как известно в основе работы детектора лежит генерация электрического тока, обусловленная падающими фотонами. От него требуется улавливание даже очень слабого оптического сигнала и генерация заметного электрического тока. Однако в действительности электрический сигнал может быть достаточно слабым.
Сигнал несёт полезную информацию, а шум является чем-то дополнительным и бесполезным. Хотя, шум присутствует во всех частях коммуникационной системы, особенно важен его уровень на входе в приёмное устройство. Причина в том, что приёмное устройство работает со слабым сигналом, потерявшим свою первоначальную мощность при передаче. Поэтому, шум становится заметным на фоне слабого сигнала. Того же уровня шум в передающем устройстве обычно не существенен, поскольку здесь уровень сигнала намного выше. Итак, шум оказывает существенное влияние на порог чувствительности детекторов. Слишком слабый оптический сигнал невозможно различить на фоне шума, для этого необходимо либо уменьшить уровень шума, либо усилить сигнал.
В процессе усиления в приёмном устройстве усиливается не только сигнал, но и шум. Некоторые виды шума можно отфильтровать с помощью электронных фильтров.
Различают следующие виды шумов.

f5.12

где е – заряд электрона;
Iфср – среднее значение (постоянная составляющая) фототока (включая фоновый ток и ток сигнала);
Δf – ширина частотной полосы приёмника.
Из уравнения (5.12) видно, что дробовой шум увеличивается при росте тока и ширины полосы. Дробовой шум минимален, когда присутствует только фоновый ток и растёт при возникновении тока, возбуждаемого оптическим сигналом. Детектор с уровнем фонового тока 2нА, работающий в частотной полосе 10МГц, имеет дробовой шум на уровне 80пА:

f0.5.1

Тепловой шум. Тепловой шум возникает благодаря флуктуациям сопротивления детектора. Электроны в пространстве между электродами ведут себя хаотично. Их тепловая энергия позволяет им случайным образом смещаться. В каждый момент времени суммарный поток случайного теплового движения электронов может быть направлен к одному либо к другому электроду. Таким образом, появляется постоянно меняющийся случайный ток, изменяющий сигнал. Тепловой ток задаётся выражением

f5.13

f0.5.2

Тепловой и дробовой шумы в ФД определяются структурой вещества и могут быть уменьшены при улучшении устройства детектора, но избавиться от них полностью невозможно. Любой сигнал – оптический, электрический или звуковой – обязательно существует совместно с шумом. После приёма, на стадии следующей после детектирования, происходит усиление сигнала совместно с шумом. Таким образом, сигнал должен быть существенно больше шума. Если амплитуда сигнала равна амплитуде шума, то это следствие плохого детектирования. При адекватном детектировании амплитуда сигнала должна минимум в два раза превосходить амплитуду шума.

Шумы темнового тока. Ранее было отмечено, что даже при отсутствии падающего на фотодиод излучения (Р=0) через ФД протекает темновой ток. Его характер также случаен и он является дополнительным источником шума, который подобен квантовому. Величина среднеквадратичного значения шумовой составляющей темнового тока IшT определяется его средним значением IT следующим образом:

f5.14

Фотодетектор с уровнем темнового тока 10нА, работающий в полосе 10МГц, имеет шум темнового тока

f0.5.3

Таким образом, полный шумовой ток определяется как среднее квадратичное дробового, теплового и темнового тока:

Источник

DACHARAI - самый большой ресурс для садовода
Adblock
detector