что такое спектральная плотность виброускорения

Содержание

Испытание случайной вибрацией

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

Исследования реальных вибраций различных ЛЛ показали, что вибраций являются случайными функциями времени. Их статистические характеристики определяются в результате обработки записей реальной вибрации. Целью испытаний является воспроизведение на вибростенде вибрации с заданными статистическими характеристиками в контрольных точках испытуемого объекта. Поскольку в качестве заданных статистических характеристик используются результаты обработки натурной вибрации, испытания случайной вибрацией наиболее точно воспроизводят реальное вибрационное состояние испытуемого изделия.

При организации испытания случайной вибрацией принимают две гипотезы:

1) о нормальности закона распределения случайных вибраций;

2) о локальной стационарности случайных вибраций.

Обоснование первой гипотезы заключается в том, что вибрационное состояние изделия можно рассматривать как суперпозицию различных случайных процессов, порождаемых статистически независимыми источниками. Следует учесть также, что если вибродатчик расположен в таком месте конструкции, где проявляются ее фильтруй щие свойства, то закон распределения выходного сигнала этого датчика приближается к нормальному.

Вторая гипотеза предполагает, что статистические характеристику вибрации изменяются достаточно медленно во времени. Это позволяет считать, что некоторые усредненные характеристики, вычисленные в определенном временном интервале, дают адекватное описание вибрационного состояния на этом отрезке времени.

Свойства вибрации как стационарного централизованного нормального процесса полностью определяются в общем случае ковариационной матрицей или ее преобразованием Фурье — матрицей спектральных плотностей. В частотном (скалярном) случае процесс характеризуется корреляционной функцией или спектральной плотностью. Поскольку испытуемые конструкции являются многорезонансными динамическими системами с ярко выраженными частотно-избирательными свойствами, спектральные характеристики (собственные и взаимные спектры) наиболее наглядны и имеют определяющее значение для инженера-испытателя. Режим испытаний случайной вибрацией определяется спектральной плотностью виброускорения, контролируемого в одной точке и в одном направлении, или матрицей спектральных плотностей при анализе векторной вибрации.

Вибрационные испытания в широкой полосе охватывают обычно частотный диапазон в одну-две декады. Случайная узкополосная вибрация возбуждается и исследуется в полосе единиц или десятков герц.

Испытание широкополосной случайной вибрацией. Широкополосные случайные процессы с заданным энергетическим спектром получили широкое распространение в качестве физических моделей реальных вибропроцессов. Описание моделей реальных вибропроцессов в рамках корреляционной теории позволяет характеризовать эквивалентность воспроизводимых и реальных вибраций степенью близости их энергетических спектров. При этом тракт воспроизведения вибрации вибро испытательно го комплекса должен обеспечивать воспроизведение в контролируемой точке или в совокупности контролируемых точек исследуемого объекта механических колебаний с требуемым энергетическим спектром.

Этот метод испытаний предусматривает одновременное возбуждение всех резонансных частот объекта. Схема установки для испытания широкополосной случайной вибрацией приведена на рис. 2.24.

Правильному воспроизведению вибрации препятствует искажающее влияние средства возбуждения вибрации. Поэтому перед испытаниями необходимо скорректировать или выровнять амплитудно-; частотную характеристику вибростенда. При испытаниях в контрольных точках изделия возбуждаются стационарные случайные вибрации. Их числовые характеристики должны быть близки к заданным, которые определяют по результатам натурных испытаний.

Метод испытания широкополосной случайной вибрацией позволяет воспроизвести те числовые вибрационные характеристики условий эксплуатации, которые влияют на надежность испытуемого изделия. За критерий подобия принята спектральная плотность вибрационных ускорений, так как вероятность выхода изделия из строя или нарушения режима его работы возрастает с повышением уровня спектральной плотности вибрации.

640 1

image178

Программу испытаний задают в виде графика зависимости спектральной плотности от полос частоты, в которых проводили эти измерения. Эта программа воспроизводится вибростендом в контрольной точке изделия с помощью формирователей энергетического спектра, которые в общем случае представляют собой источник широкополосного случайного сигнала или белого шума и набор регулируемых полосовых фильтров.

Испытание узкополосной случайной вибрацией. Режим меняющейся узкополосной случайной вибрации является промежуточным между режимом широкополосной случайной вибрации и режимом с изменяющимся синусоидальным сигналом. Метод основан на замене возбуждения широкополосной плотности малого ускорения возбуждением узкополосной плотности большого ускорения, медленно изменяющейся на некотором участке частотного диапазона.

При правильной регулировке метод обеспечивает то же число наиболее важных ускорений на заданном уровне, что и метод широкополосной вибрации. Для воспроизведения условий резонанса и нагружения испытуемого образца узкополосная вибрация должна обладать теми же характеристиками, что и широкополосная. Необходимо также, чтобы число изменений знака ускорения для любого увеличения уровня напряжения было тем же.

Этот метод имеет следующие преимущества:

1) возможность получения значительных уровней нагрузки с помощью менее мощного оборудования;

2) возможность применения более простой аппаратуры управления а, следовательно, использования менее квалифицированного персонала.

Основными задачами являются определение закона изменения средней частоты во времени и закона изменения вибрации в зависимости от частоты. При определении этих законов основываются на эквивалентности испытаний узко- и широкополосной случайной вибрацией. Такая эквивалентность, например, установлена при испытаниях на усталостную прочность, при которых требуется идентичность распределения максимумов и минимумов нагрузки при узко- и широкополосной вибрации. Идентичность имеет место в том случае, когда средняя частота f изменяется по логарифмическому закону, а среднеквадратичное значение виброускорения пропорционально квадратному корню частоты image180. Для удобства назначения режима испытаний вводят параметр γ, который называется градиентом ускорения:

Читайте также:  Водить во сне на поезде

image182

где σy — среднеквадратичное значение виброперегрузки (по ускорению в единицах g = 9,81 м×с 2 ) при узкополосном возбуждении. Если σy должно быть пропорционально image180, то градиент ускорения при испытаниях на узкополосную вибрацию — постоянная величина.

Время испытаний при логарифмическом изменении частоты определяется как

image184

где fy и fm — время проведения испытаний при узко- и широполос-ной вибрации; р — масштабный коэффициент; fв и fи — соответственно высшая и низшая частоты диапазона, в котором производится сканирование. Для воспроизведения условий широкополосной вибрации с равномерной спектральной плотностью S в полосе частот fв и Fн (рис. 2.25) градиент ускорения вычисляется по формуле

image186

где кср — средний коэффициент передачи вибросистемы;

image188

Из выражений (2.52) и (2.53) видно, что режим испытания узкополосной вибрацией определяется коэффициентами р и q. Коэффициент q может изменяться от 1.14 (при простых испытаниях) до 3,3 (при ускоренных испытаниях).

Коэффициент р изменяется соответственно в пределах 0,65 — 0,025.

На рис. 2.25,а показаны спектральные плотности узкополосных и широкополосных вибраций. Наклон штриховой линии (tgα), определяющий скорость нарастания спектральной плотности при изменении средней частоты f, равен квадрату градиента ускорения.

Важной особенностью таких испытаний является возможность автоматического регулирования уровня вибрационных нагрузок (рис. 2.25,6).

Узкополосный случайный процесс с переменной по времени центральной частотой / получается с помощью генератора белого шума и сопровождающего фильтра, центральная частота которого изменяется приводом сканирования частоты (ПСЧ). Скорость вращения ПСЧ регулируется в широких пределах. Среднеквадратичное значение узкополосных вибраций на выходе вибросистемы стабилизируется с помощь*» системы автоматической регулировки усиления (АРУ). Сигнал обратно! связи АРУ поступает с выхода виброметрической аппаратуры (ВА).

Приращению среднеквадратичного значения сигнала, пропорции нальному image180соответствует в логарифмическом масштабе наклон 3 дБ на октаву. Поэтому на выходе ВА (перед входом АРУ) включается фильтр, имеющий затухание 3 дБ на октаву. Это и обеспечивает постоянство градиента ускорения при сканировании средней частоты.

Источник

Что такое спектральная плотность виброускорения

ГОСТ 28223-89
(МЭК 68-2-37-73)

Основные методы испытаний на воздействие внешних факторов

Испытание Fdc: Широкополосная случайная вибрация

Basic environmental testing procedures. Part 2. Tests. Test Fdc: Random vibration, wide band. Reproducibility low

ОКСТУ 6000, 6100, 6200, 6300

Дата введения 1990-03-01

1. Постановлением Государственного комитета СССР по стандартам от 15.08.89 N 2561 введен в действие государственный стандарт СССР ГОСТ 28223-89, в качестве которого непосредственно применен стандарт Международной Электротехнической Комиссии МЭК 68-2-37-73 с Поправкой N 1 (1983), с 01.03.90.

2. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ:

Обозначение отечественного нормативно-технического документа,
на который дана ссылка

Обозначение соответствующего стандарта

Раздел, подраздел, пункт, в котором приведена ссылка

3. Замечания к внедрению ГОСТ 28223-89

Техническое содержание стандарта МЭК 68-2-37-73* «Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Fdc. Широкополосная случайная вибрация. Низкая воспроизводимость» принимают для использования и распространяют на изделия электронной техники народнохозяйственного назначения.

4. ПЕРЕИЗДАНИЕ. Октябрь 2006 г.

1. Официальные решения или соглашения МЭК по техническим вопросам, подготовленные техническими комитетами, в которых представлены все заинтересованные национальные комитеты, выражают с возможной точностью международную согласованную точку зрения по рассматриваемым вопросам.

2. Эти решения представляют собой рекомендации для международного пользования и в этом виде принимаются национальными комитетами.

3. В целях содействия международной унификации МЭК выражает пожелание, чтобы все национальные комитеты приняли настоящий стандарт МЭК в качестве своего национального стандарта, насколько это позволяют условия каждой страны.

Любое расхождение с этим стандартом МЭК должно быть, по возможности, четко указано в соответствующих национальных стандартах.

ВВЕДЕНИЕ

Первый проект обсуждался на совещании в Стокгольме в 1968 г.

За издание стандарта голосовали следующие страны:

_______________
* Соединенное Королевство Великобритании и Северной Ирландии.

Соединенные Штаты Америки

Федеративная Республика Германии

1. ВВОДНАЯ ЧАСТЬ

В настоящем стандарте часто упоминаются два особо важных термина из области воздействия случайной вибрации.

Определения этих терминов приводятся ниже.

Спектр СПУ определяет закон изменения СПУ в пределах частотного диапазона.

2. ЦЕЛЬ

Испытания на воздействие случайной вибрации применимы к элементам и аппаратуре, которые в условиях эксплуатации могут подвергаться воздействиям вибраций, имеющих случайный характер. Целью испытания является также выявление возможных механических повреждений и (или) ухудшения заданных характеристик изделия, а также использование указанных данных наряду с требованиями соответствующей НТД для решения вопроса о пригодности образца.

Во время проведения испытания образец подвергают воздействию случайной вибрации с заданным уровнем в пределах широкой полосы частот. Вследствие сложной механической реакции образца и его крепления это испытание требует особой тщательности при его подготовке, проведении и установлении соответствия параметров образца заданным требованиям.

3. КРЕПЛЕНИЕ И КОНТРОЛЬ

Образец крепят на испытательной установке в соответствии с требованиями МЭК 68-2-47 (ГОСТ 28231).

3.2. Контрольные и измерительные точки

Требования к испытаниям обусловливаются измерениями в контрольной точке и, в некоторых случаях, в измерительных точках в зависимости от точек крепления образца. Измерения в измерительных точках необходимы только в том случае, когда используется воображаемая контрольная точка.

3.2.1. Точка крепления

Точкой крепления называется часть образца, которая находится в контакте с крепежным приспособлением или вибрационным столом и является обычно местом крепления при эксплуатации. Если образец крепят к вибрационному столу с помощью крепежного приспособления, то точками крепления образца считают точки крепления крепежного приспособления, а не образца.

3.2.2. Измерительная точка

Измерительной точкой является обычно точка крепления. Она должна быть расположена как можно ближе к точке крепления изделия и в любом случае должна быть жестко связана с ней.

Если задана воображаемая контрольная точка и имеются четыре или менее точек крепления, то каждая точка крепления должна рассматриваться как измерительная точка. Если имеется более четырех точек крепления, то в соответствующей НТД следует указать четыре характерные точки, которые должны использоваться как измерительные.

Примечание. Для больших и (или) сложных образцов важно, чтобы измерительные точки были указаны в соответствующей НТД.

3.2.3. Контрольная точка

Контрольная точка является единственной точкой, из которой получают контрольный сигнал, соответствующий требованиям испытания, и которая используется для получения информации о движении образца. Такой точкой может быть измерительная точка или воображаемая точка, полученная при ручной или автоматической обработке сигналов и измерительных точек.

Читайте также:  Исламский сонник во сне арбуз

Если используется воображаемая точка, то спектр контрольного сигнала определяется как среднеарифметическое значений СПУ всех измерительных точек на каждой частоте. В этом случае кумулятивное (суммарное) среднее квадратическое значение контрольного сигнала эквивалентно среднему квадратическому значению всех средних квадратических значений сигналов, полученных в измерительных точках.

В соответствующей НТД должна быть указана точка, которую следует использовать как контрольную, или способ, с помощью которого она может быть выбрана. Рекомендуется использовать воображаемую контрольную точку для больших и (или) сложных образцов.

4. ОБНАРУЖЕНИЕ РЕЗОНАНСНЫХ ЧАСТОТ

Если в соответствующей НТД предусматривается обнаружение резонанса, то допуски, указанные для испытания на синусоидальную вибрацию в МЭК 68-2-6 (ГОСТ 28202), следует применять на всех стадиях обнаружения резонансных частот.

4.1. Амплитуда синусоидальной вибрации

Если в соответствующей НТД не указано особо, амплитуда синусоидальной вибрации, которая используется для обнаружения резонанса, определяется заданным уровнем СПУ (табл.1). В данном случае в контрольной точке следует поддерживать амплитудное значение ускорения.

Источник

спектральная плотность ускорения

Смотри также родственные термины:

3.16 спектральная плотность ускорения сигнала управления (control acceleration spectral density): Спектральная плотность ускорения сигнала, измеренного в контрольной точке (реальной или воображаемой).

3.16 спектральная плотность ускорения сигнала управления (control acceleration spectral density): Спектральная плотность ускорения сигнала, измеренного в контрольной точке (реальной или воображаемой).

Полезное

Смотреть что такое «спектральная плотность ускорения» в других словарях:

спектральная плотность ускорения сигнала управления — 3.16 спектральная плотность ускорения сигнала управления (control acceleration spectral density): Спектральная плотность ускорения сигнала, измеренного в контрольной точке (реальной или воображаемой). Источник … Словарь-справочник терминов нормативно-технической документации

истинная спектральная плотность ускорения — 3.37 истинная спектральная плотность ускорения (true acceleration spectral density): Спектральная плотность ускорения, воздействующего на образец. Источник … Словарь-справочник терминов нормативно-технической документации

наблюдаемая спектральная плотность ускорения — 3.24 наблюдаемая спектральная плотность ускорения (indicated acceleration spectral density): Оценка спектральной плотности ускорения на считывающем устройстве анализатора, включающая в себя инструментальную погрешность, случайную погрешность и… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 31419-2010: Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытания на вибрацию с воспроизведением воздействий нескольких типов — Терминология ГОСТ 31419 2010: Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытания на вибрацию с воспроизведением воздействий нескольких типов оригинал документа:… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 53189-2008: Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытания на вибрацию с воспроизведением воздействий нескольких типов — Терминология ГОСТ Р 53189 2008: Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытания на вибрацию с воспроизведением воздействий нескольких типов оригинал документа: 3 … Словарь-справочник терминов нормативно-технической документации

MAX/SUM — 3.10 MAX/SUM : Способ задания спектральной плотности ускорения (см. 3.14) для узкополосной случайной вибрации, воспроизводимой в условиях испытаний на фоне широкополосной случайной вибрации. Примечание МАХ означает, что спектральная плотность… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 52862-2007: Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытания на воздействие акустического шума (вибрация, акустическая составляющая) — Терминология ГОСТ Р 52862 2007: Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытания на воздействие акустического шума (вибрация, акустическая составляющая) оригинал… … Словарь-справочник терминов нормативно-технической документации

фильтр — 3.4 фильтр (filter): Аппарат для разделения или удаления загрязнителей из сжатого воздуха или потока газа. Источник: ГОСТ Р ИСО 12500 1 2009: Фильтры сжатого воздуха. Методы испытаний. Часть 1. Масла в виде аэрозолей … Словарь-справочник терминов нормативно-технической документации

фильтр постоянной ширины полосы пропускания — 3.2.8 фильтр постоянной ширины полосы пропускания (идентично В.21, [9]): Фильтр, обладающий постоянным значением абсолютной ширины полосы пропускания, не связанным со среднегеометрическим значением частоты ширины полосы. 3.2.9 фильтр… … Словарь-справочник терминов нормативно-технической документации

ТУРБУЛЕНТНОСТЬ — явление, наблюдаемое во мн. течениях жидкостей и газов и заключающееся в том, что в этих течениях образуются многочисленные вихри разл, размеров, вследствие чего их гидродинамич. и термодинамич. хар ки (скорость, темп ра, давление, плотность)… … Физическая энциклопедия

Источник

Лекция 14. Спектральный анализ вибрации

Спектральный анализ – это метод обработки сигналов, который позволяет выявить частотный состав сигнала. Известны методы обработки вибрационного сигнала: корреляционный, автокорреляционный, спектральной мощности, кепстральных характеристик, расчета эксцесса, огибающей. Наибольшее распространение получил спектральный анализ, как метод представления информации, из-за однозначной идентификации повреждений и понятных кинематических зависимостей между происходящими процессами и спектрами вибрации.

Наглядное представление о составе спектра дает графическое изображение вибрационного сигнала в виде спектрограмм. Выявление картины амплитуд, составляющих вибрации позволяет идентифицировать неисправности оборудования. Анализ спектрограмм виброускорения позволяет распознать повреждения на ранней стадии. Спектрограммы виброскорости используются при мониторинге развитых повреждений. Поиск повреждений проводится на заранее определенных частотах возможных повреждений. Для анализа вибрационного спектра, выделяются основные составляющие спектрального сигнала из следующего перечня.

102

Рисунок 102 – Гармонические составляющие вибрационного сигнала при дисбалансе ротора

Основные причины появления гармоник:

103

Рисунок 103 – Субгармоника 1/4 оборотной частоты вибрационного сигнала

104

Рисунок 104 – Полуторные гармоники оборотной частоты

105

Рисунок 105 – Резонансная составляющая на частоте 1140 Гц

где fвр – частота вращения вала; z число тел качения; d – диаметр тел качения; β – угол контакта (соприкосновения тел качения и беговой дорожки); D – диаметр окружности, проходящей через центры тел качения (рисунок 107).

106

Рисунок 106 – Спектр виброскости подшипника качения с повреждениями наружного кольца – появление гармоник с частотой перекатывания тел качения по наружному кольцу

107

Рисунок 107 – Схема к расчету частот повреждений подшипников

При значительном развитии повреждения появляются гармонические составляющие. Степень повреждения подшипника определяется числом гармоник определенного повреждения.

Повреждения подшипников качения приводят к появлению большого количества составляющих в спектре виброускорения в районе собственных частот подшипников 2000…4000 Гц (рисунок 108).

Читайте также:  Вырвать зуб во сне видео

108

Рисунок 108 – Резонанс тел качения при износе подшипника на частоте 2800…3700 Гц в спектре виброускорения

где z – число зубьев колеса либо число лопаток.

Повреждения, проявляемые на зубцовой частоте, могут генерировать гармонические составляющие при дальнейшем развитии повреждения (рисунок 109).

109

Рисунок 109 – Зубцовые частоты и негармоническая составляющая повреждений подшипника

110

Рисунок 110 – Модуляция с частотой 47 Гц зубцовой составляющей на частоте 708 Гц

111

Рисунок 111 – Модуляции с частотой 100 Гц вибрационного сигнала

112

Рисунок 112 – Шумовые компоненты в составе вибрационного сигнала

При наличии знаний о составляющих спектра появляется возможность различения их в частотном спектре и определения причин и следствий повреждения (рисунок 113).

113 1

113 2

113 3

113 4

Рисунок 113 – Примеры спектральной формы вибрационного сигнала:
а) спектрограмма виброскорости механизма, имеющего дисбаланс ротора и частоту первой гармоники 10 Гц; б) спектр виброскости подшипника качения с повреждениями наружного кольца – появление гармоник с частотой перекатывания тел качения по наружному кольцу; в) спектрограмма виброускорения соответствующая повреждениям подшипников качения шпинделя вертикально-фрезерного станка – резонансные составляющие на частотах 7000…9500 Гц; г) спектрограмма виброускорения при схватывании второго рода, детали обрабатываемой на металлорежущем станке

Правила анализа спектральных составляющих

Для эффективного мониторинга технического состояния необходим ежеме-сячный контроль спектрального анализа составляющих виброскорости. В истории развития повреждений существует несколько этапов:

114 1

114 2

114 3

114 4

Рисунок 114 – Этапы развития повреждений механизма – виткоукладчика:
а) хорошее состояние; б) начальная неуравновешенность; в) средний уровень повреждений; г) значительные повреждения

Одним из характерных повреждений механизма после длительной эксплуатации (10…15 лет) является непараллельность опорных поверхностей корпуса машины и фундамента, при этом вес машины распределяется на три или две опоры. Спектр виброскорости в этом случае содержит гармонические составляющие с амплитудой более 4,5 мм/с и полуторные гармоники. Повреждение приводит к повышенной податливости корпуса в одном из направлений и нестабильности фазового угла при балансировке. Поэтому, не параллельность опор корпуса машины и фундамента, ослабление резьбовых соединений, износ посадочных мест подшипников, повышенный осевой люфт подшипников перед балансировкой ротора необходимо устранить.

Варианты появления и развития полуторных гармоник представлены на рисунке 115. Малая амплитуда полуторной гармоники характерна для ранней стадии развития данного повреждения (рисунок 115а). Дальнейшее развитие может проходить двумя путями:

Необходимость ремонта возникает в том случае, если амплитуда полуторной гармоники превышает амплитуду оборотной частоты (рисунок 115г).

115 1

115 2

115 3

115 4

Рисунок 115 – Варианты проявления и развития полуторных гармоник:
а) ранняя стадия развития повреждения – малая амплитуда полуторной гармоники; б) развитие повреждения – увеличение амплитуды полуторной гармоники; в) развитие повреждения – появление гармоник 1¼, 1½, 1¾ и др.;
г) необходимость ремонта – амплитуда полуторной гармоники превышает
амплитуду оборотной частоты

Для подшипников качения также можно выделить характерные спектрограммы виброускорения, связанные с различной степенью повреждения (рисунок 116). Исправное состояние характеризуется наличием незначительных по амплитуде составляющих в низкочастотной области исследуемого спектра 10…4000 Гц (рисунок 116а). Начальная стадия повреждений имеет несколько составляющих с амплитудой 3,0…6,0 м/с 2 в средней части спектра (рисунок 116б). Средний уровень повреждений связан с образованием «энергетического горба» в диапазоне 2…4 кГц с пиковыми значениями 5,0…7,0 м/с 2 (рисунок 116в). Значительные повреждения приводят к увеличению амплитудных значений составляющих «энергетического горба» свыше 10 м/с 2 (рисунок 116г). Замену подшипника следует проводить после начала снижения значений пиковых составляющих. При этом меняется характер трения – в подшипнике качения появляется трение скольжения, тела качения начинают проскальзывать относительно беговой дорожки.

116 1

116 2

116 3

116 4

Рисунок 116 – Этапы развития повреждений подшипника качения:
а) хорошее состояние; б) начальная стадия; в) средний уровень повреждений;
г) значительные повреждения

Анализ огибающей

Работа подшипников качения характеризуется постоянным генерированием шума и вибрации в широкополосном частотном диапазоне. Новые подшипники генерируют слабый шум и практически незаметные механические колебания. По мере износа подшипника в вибрационных процессах начинают проявляться так называемые подшипниковые тоны, амплитуда которых растет по мере развития дефектов. В итоге вибрационный сигнал, генерируемый дефектным подшипником, можно представить, с некоторым приближением, как случайный амплитудно-модулированный процесс (рисунок 117).

117

Рисунок 117 – Случайный амплитудно-модулированный процесс

Форма огибающей и глубина модуляции являются весьма чувствительными показателями технического состояния подшипника качения и поэтому положены в основу анализа. В качестве меры технического состояния в некоторых программах используется коэффициент амплитудной модуляции:

В начале развития дефектов на «шумовом фоне» начинают появляться под-шипниковые тоны, которые возрастают по мере развития дефектов приблизительно на 20 дБ относительно уровня «шумового фона». На более поздних стадиях развития дефекта, когда он принимает серьезный характер, уровень шумов начинает возрастать и достигает при недопустимом техническом состоянии величины подшипниковых тонов.

Высокочастотная, шумовая часть сигнала меняет свою амплитуду во времени модулируется низкочастотным сигналом. В этом модулирующем сигнале содержится и информация о состоянии подшипника. Наилучшие результаты этот метод даёт в том случае, если анализировать модуляцию не широкополосного сигнала, а предварительно осуществить полосовую фильтрацию вибросигнала в диапазоне примерно 6…18 кГц и анализировать модуляцию этого сигнала. Для этого отфильтрованный сигнал детектируется выделяется модулирующий сигнал, который подаётся на узкополосный спектроанализатор где формируется спектр огибающей.

Небольшие дефекты подшипника не в состоянии вызвать заметные вибрации в области низких и средних частот, генерируемых подшипником. В тоже время для модуляции высокочастотных вибрационных шумов энергии возникающих ударов оказывается вполне достаточно метод обладает очень высокой чувствительностью.

Спектр огибающей имеет всегда очень характерный вид. При отсутствии дефектов он представляет собой почти горизонтальную, слегка волнистую линию. При появлении дефектов, над уровнем этой достаточно гладкой линии сплошного фона начинают возвышаться дискретные составляющие, частоты которых просчитываются по кинематике и оборотам подшипника. Частотный состав спектра огибающей позволяет идентифицировать наличие дефектов, а превышение соответствующих составляющих над фоном однозначно характеризует глубину каждого дефекта.

При диагностике подшипника качения по огибающей удается идентифицировать отдельные неисправности. Частоты спектра огибающей вибрации, на которых обнаруживаются неисправности, совпадают с частотами спектров вибрации. При измерении с использованием огибающей необходимо вводить в прибор величину несущей частоты и проводить фильтрацию сигнала (ширина пропускания не более 1/3 октавы).

Источник

DACHARAI - самый большой ресурс для садовода
Adblock
detector